Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment.

نویسندگان

  • E P Magennis
  • A L Hook
  • M C Davies
  • C Alexander
  • P Williams
  • M R Alexander
چکیده

UNLABELLED Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood, limiting the ab initio design and engineering of biomaterials to control bacterial attachment. Combinatorial approaches involving high-throughput screening have emerged as key tools for identifying materials to control bacterial attachment. The hundreds of different materials assessed using these methods can be carried out with the aid of computational modelling. This approach can develop an understanding of the rules used to predict bacterial attachment to surfaces of non-toxic synthetic materials. Here we outline our view on the state of this field and the challenges and opportunities in this area for the coming years. STATEMENT OF SIGNIFICANCE This opinion article on high throughput screening methods reflects one aspect of how the field of biomaterials research has developed and progressed. The piece takes the reader through key developments in biomaterials discovery, particularly focusing on need to reduce bacterial colonisation of surfaces. Such bacterial resistant surfaces are increasingly required in this age of antibiotic resistance. The influence and origin of high-throughput methods are discussed with insights into the future of biomaterials development where computational methods may drive materials development into new fertile areas of discovery. New biomaterials will exhibit responsiveness to adapt to the biological environment and promote better integration and reduced rejection or infection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explaining the Concept and Models of Serendipity In Information Search Process

Background and Aim: Searching for information is not always a targeted activity; it can also be done involuntarily. The serendipity has the ability to find information randomly and as something happy, something unexpected, or a pleasant surprise. This paper examines and analyzes the concept of serendipity and its models in the process of information searching. Methods: The present study uses a ...

متن کامل

Antibacterial Metals —A Viable Solution for Bacterial Attachment and Microbiologically Influenced Corrosion—

Microbiologically Influenced Corrosion (MIC), otherwise coined as biocorrosion, is the influence of microorganisms on the kinetics of corrosion processes of metals, minerals and synthetic materials caused by their adhesion and growth. A closer observation of the MIC failure case analyses of engineering components showed that MIC occurs at or near welds. Preferential bacterial attack on the aust...

متن کامل

Polymer Microarrays for High Throughput Discovery of Biomaterials

The discovery of novel biomaterials that are optimized for a specific biological application is readily achieved using polymer microarrays, which allows a combinatorial library of materials to be screened in a parallel, high throughput format (1). Herein is described the formation and characterization of a polymer microarray using an on-chip photopolymerization technique (2). This involves mixi...

متن کامل

Discovery of Novel Materials with Broad Resistance to Bacterial Attachment Using Combinatorial Polymer Microarrays

A new class of bacteria-attachment-resistant materials is discovered using a multi-generation polymer microarray methodology that reduces bacterial attachment by up to 99.3% compared with a leading commercially available silver hydrogel anti-bacterial material. The coverage of three bacterial species, Pseudomonas aeruginosa, Staphylococcus aureus, and uropathogenic Escherichia coli is assessed.

متن کامل

High throughput methods applied in biomaterial development and discovery.

The high throughput discovery of new bio materials can be achieved by rapidly screening many different materials synthesised by a combinatorial approach to identify the optimal composition that fulfils a particular biomedical application. Here we review the literature in this area and conclude that for polymers this process is best achieved in a microarray format, which enable thousands of cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2016